
Sticky Code Mitigation for
protoDUNE

Wenqiang Gu

Brookhaven National Laboratory

1

Sticky Code

• The 6 LSBs in ADC ASIC was found to be “sticky” around 000000
(0x00) or 111111 (0x3F)

• So called sticky code, or stuck bit

2

Brian et al.

“downward”

“upward” stuck

Digital

Out

Analog In

ADC Digitization and Sticky Code

• Two stages of a 12-bit digitization
• 6 MSBs (most significant bits)

• 6 LSBs (least significant bits

• Analog input compared with MSB
first

• Sticky code issue happens between
the conversion of MSBs and LSBs

• Sticky code represents a loss of
information

3

ADC % 64 (mod64)

• Example waveform of sticky at bit 0

4

Run4368 (Noise Run)

2176 = (100010,000000)2

Channel 4

• Sticky at bit 0, 1, 63

• Linear interpolation between “un-sticky” codes is a good first step

• However, linear interpolation may not be sufficient for signal region

Sticky Code Mitigation

5

Linear interpolation

bias

Interpolation via Fourier Transform (FT)

• Shift in time domain

 Phase shift in frequency domain

𝑓 𝑥 − 𝑎  𝑒−2𝜋𝑖𝑎𝜖 መ𝑓(𝜖)

• Advantages of FT
• Only phase changed. No change of

magnitude in frequency domain
Respect the shaping of electronics response

function

• Sometime good codes tagged as “sticky”,
FT interpolation presumably minimize
the biases
 Balance of efficiency and accuracy for sticky
code tagging

6

https://en.wikipedia.org/wiki/Fourier_transform

Example:
A response function
shifted by 0.1us via FT

Mitigation Procedure

0) Identify sticky codes by bit 0, 1, 63

1) Linear interpolation for sticky codes

2) Apply FT interpolation on the linearly
interpolated waveform

7

linear interpolation for
“sticky” code at 0, 1, 63

Original waveform

ADC % 64

FT interpolation for “sticky” code

0)

0)

1)

2)

Mitigation Procedure (Cont’)

• For a single sticky code,

- If the ticks number is even, interpolate this tick with
odd-numbered waveforms, and vice versa.

• This basically “reuse” the nearby waveform, while not
“create” new waveform

- Thanks to the 2MHz oversampling 8

linear interpolation for
“sticky” code at 0, 1, 63

Original waveform

ADC % 64

FT interpolation for “sticky” code

0)

0)

1)

2)

Mitigation Procedure (Cont’)

• For a few adjacent sticky codes,

- FT interpolation based on the linearly
interpolated waveform

- Avoid the biased information from nearby
waveform

9

linear interpolation for
“sticky” code at 0, 1, 63

Original waveform

ADC % 64

FT interpolation for “sticky” code

0)

0)

1)

2)

Example (Run 4368, Event 82)

10

1. Original waveform
2. ADC % 64
3. “Pre-correction”: linear

interpolation
4. Original vs. Mitigated
5. Noise level projection of Fig. 4

1 2

3 4 5

Example (Cont’)

11

DFT Spectrum

• Amplitude slightly
suppressed in DFT spectrum

12

After mitigation
From original waveform
of a “sticky” channel (#4)

Noise RMS

• Noise fluctuation still consistent after
sticky-code mitigation

• At least does NOT bias good channels 13

• For some pre-selected noisy
channels, most of them have
slightly smaller RMS after
mitigation

Noise RMS difference:
before and after the mitigation

A Quick Look at Pulser Data

• Run3506, Event42, DAC setting =5 (Aug 21, ADC not “cold” yet)

14

Channel 4

Zoom-in

• More calibration data would be helpful since the ASIC changes after
immersed in LAr

Pulser Data (cont’)

• However, when two adjacent sticky codes happens on the peak region, the
mitigation does not work well

• Need to improve this special case
• Mitigation can be based on original waveform, while not the linear interpolated 15

Run3506, Event42, Channel 3

Zoom-in

Sticky at 3008 = (101111000000)2

Summary

• Sticky code mitigation was studied with protoDUNE noise data

• A linear interpolation and a FT interpolation was applied, some
special cases needs to be improved

• Most noisy channels looks better after mitigation

• The mitigation algorithm looks reliable for good channels

• Pulser data was quickly analyzed, looking forward to more “cold”
pulser data

16

